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By M. J. Queijo  and W. H. Michael, Jr. 

The ef fec ts  of various mass, aerodynanlc, and dimensional parameters 
on the dynam3.c lateral s t a b i l i t y  of the Dougla~ D-558-2 airplane have 
been investigated by means 'of calculations of the s t a b i l i t g  boundaries 
and the  period and damp- of the l a t e r a l   o s c i l l a t i m .  The resul te  
indicate  that  accurate determination of the stabil i ty  derivatives,   the 
r a d i i  of gyration, and the inclination of the  principal axe8 are r e w e d  
i f  calculations of the dynamic l a t e r a l   s t a b i l i t y  are t o  be of quantf- 
tative  significance.  ,Variations in the magnitudes of these  quantities 
t ha t  might  correspond t o  errors   resul t ing fk.am casual  estimates may be 
very important. 

A n  increase in the magnitude of the damping in yaw o r  an increase 
IKL the yawing moment due to  r o m n g  (in the positive direction) had a 
s tab i l iz ing   e f fec t  in both the landing and high-speed configurations. 
An increase in the damp- in r o l l  had a large stabi l iz ing  effect  in 
the landing canfiguraticm  but a amall irregular effect in high- epeed 
f l i g h t .  

The s t ab i l i t y  of the  airplane in either the landing  or high-speed 
ccmfiguration was decreased by an Fncrease In the radius of gyration 
about the normal ax i s   o r  by an inclination of the princtpal longitudinal 
axis  downward a t  %e nose. A n  increase in the radius of gyration  about 
the  langitudinal axis had a s tabi l iz ing  effect  in the high-speed configu- 
ration,  but a des tab i l iz ing   e f fec t   for  landing. 

W l t h  f laps  and gear  retracted, an increase i n  ei ther  the w i n g  
loading o r  a l t i tude  had amal l  ef fec ts  on the stabi l i ty   bomdariee and 
on the  period of the ' later&  oscillation  but  increased the time and 
number of cycles  required  for the o s c i l l a t i m  t o  h p  t o  half amplitude 

The calculatiom  indicated  inetabil$.ty of the basic airplane i n  
the landing conf'igumtion. Same improvement in the  characteristics  near 
a l i f t   c o e f f i c i e n t  of 1.0 seemed possible by reducing  the f lap deflection 



2 . . . . -. - XACA RM No. L9A24 

or by extending  the  height -of the  vertical  tail. . A t  liftrcoef’ficients of 
about 046 o r  lees  these changes appear t o  have l i t t l e  effect .  

For the mass and aerodynamic parameters which were used in t h i s  
investigation, the calculations  Indicated that the airplane would not 
meet the Bmeau  of--Aeronautics c r i te r ion  for satisfactory a p i n g  of . the  
la te ra l   osc i l la t ion  fn ~e l a n d i n g  configuration (fiaps and gear dam) 
and would meet-the cr i ter ion Fn the high-speed  configuration  (flaps and 
gear up) a t  l i f t  coefficients  greater than about 0.7. 

INTRODUCTION 

Recent studies  (references 1 and 2 )  have indicated that the problem 
of .the dynamic l a m 1  s t ab i l i t y  of high-speed a i r c ra f t  is extremely 
cnmplex because o f t h e  large n&er  of  important variables. Therefore, 
.it appears v q y  d i f f icu l t ,  if not  impossible a t  the present time, t o  xnake 
charts such as those of reference 3 (which were for   re la t ive ly  low-speed, 
light aircraft with mawept w i n g s )  frm which reliable  estimates of the 
dymmic lateral s tabi l i ty   character is t ics  of any high-speed a i r c r a f t  can 
be made. For this reason it-has been  found expedient to  investigate the 
dynamic lateral s t ab i l i t y  ch&racteristics of specific high-speed airplane 
configurations . Many of the mass and aerodynamic parameters  required f o r  
such investigations generally are n o t  known t o  a high degree of accuracy; 
therefore, the quantitative  reliabil i ty of the results, w i t h  respect  to 
the  airplane under canaideration, may be  questionable. When arbi t rary 
variations a r e  made t o  the varioua parameters, however,  a reasonably 
reliable indicat im.of  the effects  of posaible  modifications to the 
aep lane  or of changes in the   f l igh t   a t t i tude  might be expectad. The 
results a l so  ahould be of use in indicating the degree of  accuracy  with 
which the aerodynamic and mass parameters m u s t  be determined in order t o  
obtain  accurate  quantitative results. 

t 

. .  

This  Fnvestigation is  concerned with the w a m i c   l a t e r a l   s t a b i l i t y  
characteristfcs of the Douglas D-558-2 high-speed research  airplane. 
(See f ig .  1.) The mass characterist ics used in the analysirrwere speci- 
f i ed  by the Douglas Aircraft C o m p a n y ,  Lnc. The aerodynamic pazameters 
were obtabed from wind-tunnel t e s t s  of a model of the D-558-2 airplane 
or, in some instances, frm estimations based on t e s t s  of other models. 

h 

a 

The symbols and coefficient8 used herein  are   defhed  as  f’ullows: 

altitudej feet 

angle of attack of airplane reference axis. (fig. 2) ,  degreea 
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CL 

C t  

-le of sideslip,  radians 

angle of sweep, posi t ive  for  sweepback, degrees 

flap  deflection, degree8 

mass density of air, slugs per cubic  foot 

wing span, f e e t  

w h g  area, square f e e t  

w i n g  aspect   ra t io  (9 
distance f r o a n  center o f  gravity of airplane  to  center  of 

pressure  of  .vertical tail, f e e t  

perpendicular  dfstance f r a a  fuselage center lfne to  center of 
pressure  of  vertical tail, f e e t  

weight of a*plane, powda 

mass of airplane, slugs per cubic foot  

relative  density  factor (%I 
inclination of principal  longitudinal axis of airplane w i t h  

respect   to  flight path, positive when p r h c i p a l  axis is 
above f l igh t   pa th  a t  nose, degrees ( f ig .  2) 

angle between f'uselage center llne (reference axis) and 
principal  axis,  positive when reference axis is above 
principal axis a t  nom of airplane  (fig.  2) , degrees 

r ad im of gyration  about  principal  longitudinal axis, f e e t  

rdius of gyration about  principal normal ELXIs,'feet 

Wamic  pressure, pounds per equare foot &vQ G )  
trhu l l f t  coefficient ( 3  
rolling-mment  coeff  iclent - 

..+ . 



CY 

y awing-moment c oef f i c  ient 

lateral-force coefficient 

M Mach number, v 
(Local speed of 

ac, 
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T1/2 time f o r  osc i l la t ion   to  reduce t o  half amplitude, secands 
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c2 nmiber of cycles required for l a t e r a l   o s c i l l a t i o n   t o  double 
amplitude 

P period of lateral  oecillsztion,  seconb 

Subscript: 

t vertical-tail  ccmtribution 

The present  Investigation Fncluded the determFnatim of the effecte 
of &ous mass, aerodynamic, and dimensicma1 parameters on the dynamic 
l a t e ra l   s t ab i l i t y   cha rac t e r i s t i c s  of the Douglae D-558-2 airplane i n  the 
landing condition  (flaps and gear  extended) and in  t h e  high-speed condi- 
t ion '  (flaps and gear re t racted) .  For the -ding condition, the effeote 
of w i n g  loading,  extension of the  ver t ical  tail, and  reduction of the 
f l a p  deflection from po to  30° were investigated. The effects on the 
dynamic l a t e r a l   s t a b i l i t y  of varying the parameters Czp, hp, C+, k%, 
kZo, and 9 a U o  were investigated for the landing and the high-speed 
conditions. In determining  the  effects of these parameters, Czp, Cnp, 
and kr were varied percent; kq and k,, were var*ied S O  percent; 
and 9 was varied eo. ~ h e s e  variations w-em selected because they were 
believed  to  cover  the ?naximm probable e r ror  in estimating the parameters 
Involved. For the  hi&-speed  case,  the  effects of a l t i tude  and w h g  
loading were investigated. 

me speed range covered by the various  conditions  investigated was 
from about 135 miles Fer  hour a t  sea  level up t o  speed€! corresponding t o  
a Mach nmiber of about 0 -85. 

I 

All calculations in this investigation were made f o r  level flight 
and were made by the use of t h e  equatione of reference 2.  No corrections 
were made for power effects,  which  were believed  to be smdLl. 

The basic values of t h e  mass characterietics of the airplane and 
the aeroQnam3c parameters are  given In table I. "he s t a t i c - s t ab i l i t y  
parameters C z B  and C for the complete airplane, and the 

parameters CzB,  Cn,, Cyp with the ver t ica l  tail off were obtained from 
wind-tunnel tests of a model of the D-558-2 a m h e .  The rotary deriva- 
t ives  Czr,  Car, CzP, and Cnp for the  airplane w i t h  the   ver t ical  tail 
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off were estimated w i t h  the aid of re%rences 4 t o  6 .   he ver t ica l - ta i l  
cmtributione  to  the rotary derivatives were estimated by use of equations 
shutlar t o  tihose presented in reference 7. no corrections have been made 
t o  any of the derivatives t o  account f o r  Mach n.t;miber effects .  

. .  

The results of this  investigation  are  presented as a ser ies  of 
figures of the neutral-QS-Ciuatory-Stability boundary plot ted  as  a function 
of Cn and C 2  and figures of the var ia t ims  of period and r a t e  of 
damping (cycles and eecanu required f o r  lateral osc i l la t ion   to  rl~mp t o  
half- amplitude or aouible amplitude) w i t h  lift coefficient. The neutral- 
spiral-stabil i ty boundary w88 calculated f o r  each  condition  investigated, 
but the %omWies are  not  presented  since they were not  appreciably 
shifted by m y  of the vmiat ians  investigated and, Fn all instances, the 
airplane was spiral ly  stable. The p e r t a n t .  results obtained f o r  the 
lateral osci l la t ion and f o r  the aperiodic modes (spiral and damp@ in  
roll.) a m  summarized in table I1 for each condition  inv-estigated. 

P B' 

The results are divided Into three groups. The first group is f o r  
the airplane wfth f laps  and landin@; gear  retracted and gives the results 
obta+ed for:  

(a) the e f fec t s  of altitude f o r  a w i n g  loading of 53 pounds per 
square foot   ( f igs .  3 ana 4) 

(b) the effects  of w t n g  loading f o r  f l i g h t   a t  20,000 f ee t   a l t i t ude  

(c) the effects of varying the prameters CzP, Cnp, Cnr, kxo, kZo, 

(figs 5 a d  6 )  

and 7 ( f ig .  7 )  

The second group offigures is fir the airplane flying a t -  sea level 
w i t h  flaps  deflected 50° and landing-gear lowered. In this group are 
shown : 

(b) the effects of varying C C5, \, k%, Itzo, and Tt ( f ig-  10) 

The t h k d  group of figures  presents results obtained frm assumed 
modifications to   the  airplane configuration for the landing condftian. 
The resu l t s  are presented  for: 

11 

. 



(b) the effect  of  increasing  the  vertical-tail  height  by 14 inches 
(figs 13 and 14) 

The damping  characteristics of several of the airplane  configurations 
inyestigated are cangared in figure 15 w-lth the present  Bureau  of  Aero- 
nautics  specifications for satisfactory damping of t h e  lateral o s c ~ -  
tion. 

Airplane with  Flaps asd Gear Retracted 

Basic  condition.- The oalculated  dynamic  lateral  stability  Character- 
istics  of the airplane flying at sea level with a w h g  load-  of 53 pounds 
per square  foot  are s h m  by the s o l i d  c m e s  of  figures 3 and 4. This 
condition  is  for  the aiqlane w i t h  only about 1800 pounds of fuel 
r e m a w  and ie used as a basis  for cnmpaz.in@; the stability a8 various 
parameters and conditions a r e  changed. The calculations  Fndicate that 
t h e  airplane  is  laterally  stable  throughout  the  lift-coefficient range, 
but  that the stabflity  decreases as the lift coefficient  decreases 
f r o m  0.8 to about 0 -35 (fig . 4) and then increases again as the Ilf t 
coefficient is made smaller. One fairly ccmrman  criterion for eatisfactory 
dynamic  lateral  stability  chazacteristice is that  the  lateral O s c i ~ t i M  
m w t  damp to half amplitude withh two cycles - that is, C1/2 must be 
less than 2. For the case'under dlscussim t he  calculations  indicate 
that the airplane meets this requirement a at lift coefficients 
below 0.2 and  above 0.5, although the nurmber  of  cycles required to ilRmp 
to half amplitude  did  not  greazly  exceed t h e  requirement at arty of the 
lift coefficients  investigated. 

The present  Bureau of Aeronautics  specificatione  for fly- qualities 
of  piloted  aircraft  (reference 8 )  state that the damg~ng of the lateral 
oscillation shall be positive and shall be  such that the tfme  to  damp 
to  half  amplitude and the period  shall fall withFn the  satisfactory area 
of  'the  chart  presented  as the lower part of figure 15. The chart as 
given- in reference 8 can be used only f o r  stable airpbnes. However, 
for completeness, an addition can be made to the chart, as was done In 
figure 15 of this  paper, to permit  plotting  of  points  representing 
unstable confipatioq3. The region  between the two charts of  figure 15 
is a region for which at least 20 seconds are required for t h e  lateral 
oscillation  to dotible amplitude  or to reduce to half amplitude,  and for 
practical  cases,  this can  be comidered as a regim of approxhate 
neutral  oscillatory  stability 

For the case  under  discussion the me of figures 4 and 15 indicates 
that t he  airplane meets t he  Bureau of Aeronautics  criterion only for  lfft 
coefficients  greater than about 0.7 

Effects  of  altitude.- A n  increase Fn altitude  caused a destabilizing 
shift  of Qe neutral--oscillatory-s-t;ability boundary, and the shift 
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generally  increased as the l i f t  coefficient waa made W e e r  (fig. 3) 
The destabilizing shift-was  not  important a t  high lift coefficients 
as Indicated by figwe 4. A t  loa lift coefficients, however, Increase 
in  altf tude became important  became of the smaller margin of s t ab i l i t y  
of' the airplane. The time mqutbed f o r  a lateral osc i l la t ion   to  damp 
t o  half amplitude  increased w i t h  increase ip al t i tude,  and the increase 
generally became greater as the lift;-coefffcient was made amaller. 
Altitude had 110 apprec.iable effect an the  period but did af fec t  C1/2 
since 

T1/2 
C1/2 = p 

A study o f  figurefl 3 and 4 indicates that the  point  mpresenting the 
a m l a n e  an the chart o f '  Cn agahst Cz gims a p l i t a t i v e  indica- 

B B 
tion of the .a i rplane  s tabi l i ty  by its location w f t h  respect  to the 
boundary - that is, if the  point falls on the stable  side of the boundary, 
the airplane is l a te ra l ly  stable as Fndicated by T1/2 However, the 
location of the point  relative  to the bo- generally gives l i t t l e  o r  
no quantitative  Fndlcation of the airplane  stability,  especially if .the 
point is near the boundary. For example, the points on figures 3 (a) 
and 3(b) me approximately the 8ams distance fram their respective 
boundaries,  but  the tima required f o r  the oscillation t o  ARmp t o  half 
amplitude is abOrUt-10 seconds for  the case of figure 3 (a) and about 
3 0 2  seconde for the case o f f i g u r e  3(b) (for 20,000 f i  a l t i tude) .  

Effect of wing loa-.- The calculation8 indicate tha t  an increase 
in wdng loa- cawed a Bmall decrease of. t h e .  stable region throughout- 
the  l if t-coefficient range ( f ig .  5 ) .  The ef fec t  was simi~ar to that 
observed f o r  an increase in alt i tude,  which followa from the  fact  that 
wing "loadin@; and al t i tude  enter   into the s t a b i l i t r  equatians, a t  a given 
lift coefficient,.anly through ths relative-demity  factor P O  It is 
t o  be noted that for a wing loading of 68 -2' (corresponding t o  .the 
aLrylane with about. 3300 lb of fuel) the time required f o r  the lateral 
osc i l la t ion   to  decrease t o  half amplitude increases very rapidly in 
going frm CL = 0.1 t o  CL = 0.2 and from CL = 0.5 t o  CL = 0-4 
( f ig .  6) CaJxuLations made f o r  . .Q, = o .2 indicated  oscillatory Fnsta- 
b i l i t y .  These calculations  indicate that the canfitions likely t o  be 
the m o r e  undesirable a8 far as actual f l i g h e i s  'cancerned (for  conertant- 
a l t i tude)  are those f o r  which. the airplane is heavily loaded (large fuel 
load). It appears that- seriouer instabi l i ty  might  occur a t  high speedf3 
and high altitude if the airplane still carr ies  a fairly large amount of 
fuel. 

.Effects of m i a t i o n s  of aerodynamic and mass parameters.- The 
calctilated  effects on the n e u t r a l - o s c i l L s t o ~ - s t a b i l i ~  boundary of 
ming the paramsters Cz , Cnp, C+, kxo, kZa, and q are shown in 

P 

I 

t " 
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figure 7 for a wing loading of  68.2 po-cl.nds per square foot  and  a Mach 
number of 0.85 a t  20,000 f ee t   a l t i t ude .  me! mriatiaia were selected 
a rb i t r a r i l y  to indicate  effects of possible e r r o r s  in the  estimation of 
the  derivatives.  Variations of C z  by kt50 percent had l i t t l e  e f f ec t  

P 
on the   osc i l la toq-s tab i l i ty  boundary (f ig .  7(a)) f o r  values of 
less  negative than -0 -10. For values of Cz more negative than -0.10 

decreasing C caused  a s t ab i l i z ing   sh i f t  of the boundary.  Other 

unpublishe-d dynamic-lateral-stability  calculations made f o r  high-speed 
airplanes have earn sFmilar trends for a m  airplane  canfi~gwations. 

inspection of figure 7 shows that  the  stable range was increased by 
he following  variations of the parametera: An increase in the  absolute 

czP  
P 

2P 

e 
m@3aer  c”P OP hr (fo r  this ccmdition C% was always positive 
and C, always negative  .fora  the v+ms of C, a d  C z p  shown i n  
f i g  7) j 8 ~ 1  increase of k, or a decrease. of k, The s t ab le .  range 

r B 
0 0 

also was increased by making q mre positive. It should be noted  that 
during the.se calculations each parameter was varied  separately. The 
e f f s t s   t o ~ - b . ~ & L f h m  -pltaneous variation of more 
paragetem gpmr@m are not equal .to.. the sua or  the  individual-FIWF?r.tS 
The changes noted i n - t h e  boundaries  apply only t o  the  conditione for 
which the  calculations were  made. A t  sme other lift coefficient, w i n g  
loading, or altitude  the  e.ffects capaed py variations of the  parameters 
probably would be different  in magnitude and might be different even in 
direction. The resu l t s  of f igure 7 Indicate that even amall e m o r s ’ i n  
the  estimation of certain  derivatives can cause appreciable  quantitative 
errors  in the  calculated  stabil i ty  characterietics.  

Airplane a t  Sea  Level w i t h  Flaps  Deflected 5oo 

Basic  condition.- The calculated  lateral-stability  boundaries and 
damping characterist ics of the D-558-2 airplane w i t h  a w i n g  loading of 
53 pounds per- square foot  are shown ae  the  soiid  curves- of figures 8 
and 9 and are  used as a bas is   for  noting changes in the s t a b i l i t y  and 
damping as  various parameters are  modified. The results of the  calcula- 
tions ( f igs .  8 and 9 )  Indicate  that  the  airplane in the bask   cond i t im  
is Laterally  unstable throughout the   l i f t -coeff ic ient  range and tha t  
the  instabi l i ty  becomes  worse as  the lift coefficient i s  decreased. The 
dynsmic l a t e r e l   s t a b i l i t y   c h a r a c t e r i s t i c s   a r e   ~ ~ x ~ a t i s f ~ c t o r y  f o r  this 
condition. A s  noted  previously, mall errors Fn eatFmating sane of the 
s tabi l i ty   der ivat ives  or mass characterist ic6 might cause  misleading 
quantitative  results;  hence, definite  conclusions  regarding  the.character- 
i s t i c s  of  %he. actual  .airplane c a o t  be made  on the  basis of the res%its 
presented  herein.. The effect8 of, varying so1116 of the  parameters should 
give  reliable  trends. 
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Effect of w i n g  1oaaFZyg.- The results of the calculakiormindicate" 
that an increase- in whg loadlng caused a decreage .&the  stable  region 
(f ig .  8) . In t h i s  case the boundary shifkdecreased as the l i f t -coefff-  
c ient  was made smhller, which is  a reversal o f t h e  e f f ec t  noted for   the 
airplane with f laps  .hid gear  retracted (fig. . 5 )  W i n q  loading had nq 
appreciable  effect on the period but  decreased the time required for 
the lateral osci l la t ion t o  double amplitute-  (fig. 9 ) .  The w-ing loadings 
investigated were 45.5., 53 .a,. and 78 -4 pounds per equare foot  which 
correspond roughly to lan- with most o f  the' fuel gone, landing with 
a fuel reserire of about 1800 pounde, and land- (or take-off) with a 
ful l  fuel load. The calculatione  indicate that the worst condition 
likely to be encountered w i t h  f laps  and gear doWn ifl the  take-offwith a 
f u l l  'fuel load. 

Effect8 of var ia t ime of aerodynamic and mas8 parameters.- The .. 

cd-culabd  effects  of ming C Z ~ ,  Cnp, Cn;, kq-, kzO, and 7 
shown in figune 10 f o r  a w w .  loading of 43 -5. pounds per square foot- 
and a lfft coeffdcient of 1.0. The results of the calculations  indicate 
that variation of C by *50 percent had no appreciable  effect on the np 
boundary and that: $he stable .regf= wag increased by increasing  the 
absolute magnitude ,.of. cz o r  Cnr (for this cmSIguratian, ~2 and G, 
were always negative)., by decreashg kxo or Go., or  by making 7 more 
positive . It should be noted that f o r  these calculations  the  variables 
were c-ed me a t  a time - .  The large effect on the boundary of varying 
such parametem as Czp,  kxo, kZo, o r  q indicate8  that if the  character- 
istics used herein had been only a f e w  percentdifferent  fram the valuss 
ued, the results of the atabil i ty  calculations might-be coneiderably 
different. These calculations indicate the need f o r  accurate .determina- 
t ion  (e-erhental or  theoretical)  of-the mass ana aerodynamic paramsters 
of any airpiane  for  which W c - l a t e r a l - s t a b i l i t y   c a l c u l a t i o n s   a r e  to 
be made, if the results of' the calculat ions  are   to  be accepted w i t h  any 
degree of.  certain-ty 

-. 
P P * .  

A comparison of fi&eB 7 and 10 .indicates that. only variatians 
of Cnrl  Cnp, kzoJ and produce consistent changes in the boundary 
for.  a given change parameter f o r  the cams investigated (landing 
and high speed) 

Effects of Assumed Modificatians t o  Airplane 

Effect of mducin&r-flag- deflection.-  Results of calculations  (fige. 8 
and 9) have in&ic&.ted t ha t the  D-558-2 airpla&,.Fa.later"  unstable for 
the condition. of f lapa  and gear lowered. Calculatians have indicated that 
f o r  this parti~.ulw c.@i@;uration- the s t a b i l i ~  would be improved (at 
l e a s t   a t  CL =-1.0) by increasing the absolute values of 'Zp Or % J 

by decreashg kxo o r  kzo, or by kkin& q .more positive  (fig. 10) 

" 

- .  
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O f  these paramsters, probably the one easiest  t o  change i s .  the p r b c i p a l  
axia . incl inat ion q. The data of tab le  I indicate that a flap  deflection 
of 50'' produces an increment of lift e- t o  that produced by a 5O change 
in angle of attack. If the f lap  deflection were to be  reduced t o  300, 
then f o r  constant l3ft it would be  necessary to  increase a (and hence 11) 
by about 20. : Such a change in q was shown to  be  very beneficial  a t  
l e a s t  at  Q, = 1.0 ( f ig .  10). It should be  noted, however, t ha t  a reduc- 
t ion in f lap  deflection produces  changes in some of the aerodynamic 
derivatives  aa w e l l  as  in q j  hence, the  over-all   effect  on the dynamic 
s t ab i l i t y  can be  evaluated m l y  by calculatiom taking into account the 
changes in a l l  of the  derivatives. 

The results  obtained f o r  the Qnamic lateral stabi l i ty   character-  
i s t i c s  of the  airplane w i t h  the flaps  deflected 30° are  shown i n  figures ll 
and 12. Also shown in the  f igures  are the character is t ics  of the airplane 
w i t h  f laps   denec tsd  50° . . m e  resul ts   wdicate   at a t  = 1.0 a 
large  s tabi l iz ing  shif t  of the boundarg w88 obtained by reduckg the 
f l a p  deflection t o  30° but that the  ehif t  became emaller as the  lift 
coefficient was decreased. It is also  noted that the p o h t  representing 
the  airplane on the plane of C againet C 2  moved in the same 

direction as the boundary j theref ore, the increase in stabilitg wa8 not 
very great   ( f ig .  12) . A t  a l i f t  coefficient of 1 .O the calculations 
indicated that the a i r p m e  ~ 8 s  stable  but  about 6.7 cycles were required 
f o r  t he   l a t e ra l   o sc i l l a t ion   t o  ilFlmp t o  ha l f  amglitude, and the-condition, 
therefore, was not ~ e r y  satisfactory.  A t  lower lift coefficients t he  
airplane .remained  una@fble. "&us, it appears t ha t  a reduction in  f lap  
deflection cannot be  expected t o  cauae any appreciable  increase i n  
s t a b i l i t y   a t  moderate or  emall lift coefficients. 

B -  

Effect of increasing the ver t ica l - ta i l   he i&t  .- One method of 
eecuring dymm3c l a t e r a l   s t a b i l i t y  LE t o  make C, large enough a$ that 
the  point  representlng the a m l a n e  on the chmt  of againat 

Fs well above the osc i l l a toq - s t ab i l i t y  boundmy- The value of ks 
can  be  increased  easily by increasing the vert ical- ta i l   height .  The 
effectiveness of this   solut ion depends on how the  Increased t a i l   he igh t  
a f fec ts  a l l  the  derivatives.  Canputations of the d p m i c   l a t e r a l  
s tabi l i ty   character is t ics   of . the  a i rplane were made f o r  en  assumed 
vertical-tail   extension of 14 Inches f o r  the  condition of sea-level 
f l i g h t  with flaps  deflected 50°. m e  resu l t s  of t ~ e  canputations are 
cnmpared in figures 13 and 14 w i t h  the resu l t s  f o r  the  airplane w i t h  ita 
original   ver t ical  tail.. It is clear  that   increaeing the ver t i ca l - t a i l  
height caused a mall e tab i l i z ing   sh i f t  of the s t a b i l i t y  boundary through- 
out most of the l i f t -coef f ic ien t  range ( f ig .  13). A t  high lift coeffi- . 
cients  the  calculated  increase Fn C+ caused by the tail addition was 
enough t o  place the point representing the airplane on the  stable side 

c of the  a tabi l i ty  boundary. The calculated  effect  of the tail extension 

B 
Cne c 2 P  

- 

on CZB was amall at  high lift coefficients. As the l i f t  coefficient 

was decreased, however, the  calculated  increase i n  CnB became smaller, 
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and C l  became more negative. -The ne t  result w a ~  tha t  as .  the l i f t  .coeffi- 
c ient  decreased  the  effectiveness o f t h e  ver t ica l  t a i l  in improving the * 
s t ab i l i t y  was decreased. This is -0 indicated in figure 14. nua, 
although sQme -pro.pment. in  the._dynamic s tabi l i ty   character is t ics  
a t  = 1.0 might be exgected fram an extsmian o p t h e  vert ical  tail, 
it appears W t - l i t t l e ,  if any, Fmprovement would be  obtained a t  l i f t  
coefficients of.  about 0 -6 o r .  less. 

B 

CONCLUSIOmS 

Calculations have been made t o  determine the effecta  of-various 
-8, aerod;yaamic,. and dimsnsional pmam.t;ere on the dynamic lateral 
s t ab i l i t y  of the Douglas p558-2 airplane. The results of . the inveatig&- 
t ion have led t o  the following conclusions: 

1- Accurate determ3mtio.n of the stabil i ty  derivativea,  the r a u i  
of-ggraticm, and the faclipation of the principal &18s are required if' 
calctktianer of the m c  l a t e ra l   s t ab i l i t y  a r e  expected t o  be of 
quantitative  significance. . .   . .   . .   . .   . .  . 

2 The. dpmmic s t ab i l i t y  WBB improved in the landing and high-speed 
cmfigura t ims  by B T ~  increase In the mqnitub of the. damping i n  yaw, by 
an increase in  the  nagnitude of the yawFng moment due t o   ro l l i ng  ( in  the 
positive  direction), by making the Inclination of the principal axee more 
positive, . o r .  by decreasing the magnitude of the  radim of gyration about- 
the principal nOrmal a x i s  .. . .  . 

4 A n  increase in the raaw o r  gyration  about  the princZpal 
1OngitudFnal a x i s  hproved the s t ab i l i t y  in high-speed f l i g h t  but-was 
destabilizing i n  the l6-g at t i tude.  . .  . ._ . 

5 -  With f l a p s  and gear retracte-d a n  increase in either the wFng  
loading or. the. a l t i t ude  hadxaiher emall effects  on the . s tab i l i ty  bowda- 
ries and on the period of the  la teral   osci l la t im  but-   increased  the time 
and nuuiber of cycles required for the oercillatlon t o  dam2 t o  half 
amp15 tude . . .  " .. . . - " . .- . .  

.. . 

6- m e -  c a c f i t i s  inacated- m c  FnS-bility of the . - .  , 

basic  airplane  configuration- Fn the -landing at t i tude.  S.ame fmprovement~ 
In s k l j i l i t y  near a lift coefficient -of 1.0 raeerned possible by miducing 
the flap.  .deflection  or by extending the height o f t h e  v e r t i c a l   t a i l .  . 
A t  l i f t  coefficients of about 0.6. or lese, these changes appear . t o  hetve 
l i t t l e  effect .  

. .  

. .  . .  - 
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7. For the configurations  Investigated, the calculations  indicated 
tha t  the airplane would not meet the Bureau of  Aeronautics  criterion  for 
satisfactory damping  of the lateral osci l la t ion in  the landing configura- 
%ion  (flaps and gear down), and would meet tihe cr i te r ion  in the high- 
speed configuration  (flaps and gear up) OIQ a t  lift coefficients greater 
than about 0.7. 
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Figure 1.- Drawlng of Douglas IL55%2 h i m p e e d  research airplane. 
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Figure 2;- Angular . relationshfpe In flight. Arrow8 indicate positive 
direction of angles. 11 = a - B .  

. 
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Figure 4.- Effect o f ' a l t l t ude  on the 'period and damping of the lateral 

oscillation. = 53; flaps and gew retracted. W 
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Figure 6.- EffectB of wing loading on the period and dmping of the 
lateral  oscillation. h = 20,000 feet; flaps and gear retracted. 
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Figure 7.- Effects of variations of Czp,  Cnp, C,,, kxo, kzO, and on 

the  oscillatory-stability boundary. = 68.2; h = 20,000 feet; 

M = 0.85; flaps and gear retracted; CL = 0.138. 
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Figure 8.- Effects of wing loading on the oscil latory-stabil i ty born- 
for sea-level f l i gh t .  Flaps and gear dam; 6f = 50'. 
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Figure 9.- Hfects of w l n g  loading on the period and dag ing  of  the 

lateral oscillation f o r  sea-level flight. F h p a  and gear down; 
zf = 50°. . 
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Figure 10.- Effects of variations of C2 Cnp, Cnr, kxo, kz0 and 51 on 

the oscillatory-stability boundary f o r  sea-level fli&t. = 45.5; 
flaps and gear d m ;  Ci = 1.0. 
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Figure 12.- Effe.cts of flap deflec€ion on the period and damping of .the 

lateral oscillation. Sea-level flight; = 53.0. 
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Figure 13.- Effects on the oscillatory-stability  boundariea of increasing 

the vertical-tail he-t by 14 inches. Sea-level flight; E e 53 .o; 
flap6 and gear d m .  
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Figure 14.- Effects of increasing the  vertical-tall  height on the period 

and dRmpiW3 of the lateral os .c i l lh t ion .  Sea-level flight; E =  53.0; 
f l a p s  and ge.ar down; isf =. wo. 
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Figure 15.- Comparison of calculated damping characterist ics for several . 

configurations of the IL55%2 airplane with  the Bureau of Aeronautics 
cr i ter ion for satisfactory damping. 
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